Aliases and Contexts - Why do we need them?

[image: image1.wmf]
Aliases and Contexts - Why do we need them?
Aliases and Contexts - Why do we need them?
The techniques in this document will work with Business Objects version 4.x and later

Document created 26/3/9726th March 1996 by Paul Hearmon

Fan Trap section re-written on 2nd October 2002 by Steven White

Error! Reference source not found.
Version Error! Reference source not found.
Aliases and Contexts - Why do we need them?
The BusinessObjects product and technology are registered under US patent number 5,555,403.

The Business Objects logo and BusinessQuery are registered trademarks of Business Objects SA. BusinessObjects, BusinessMiner, WebIntelligence are trademarks of Business Objects SA.

All other company, product or brand names mentioned herein, indicated or otherwise, may be trademarks of their respective owners.

Specifications subject to change without notice. Not responsible for errors or omissions.

Copyright © 1997 Business Objects. All rights reserved.

Permission to use this document is granted provided that use of this document is for informational and non commercial purposes only.

Business Objects may make improvements and/or changes in the products and / or the programs described herein at any time.

This document is being delivered as is, without warranty of any kind. Business Objects disclaims all warranties and conditions, including all implied warranties and conditions of merchantability , fitness for a particular purpose, title and non infringement.

In no event shall business objects be liable for any special, indirect or consequential damages whatsoever resulting from the use or performance of information available in this document.

Any software and documentation included herein is provided with restricted rights, as defined in DFARS 252.227-7013(c)(1)(ii) or FAR 52.227-19.of the commercial computer software restricted rights, as applicable.
Why do we need Aliases and Contexts?

3Why do we need Aliases and Contexts?

Resolving database “loops”
4

Using Aliases…
4

And sometimes Contexts…
4

Preventing the “Chasm Trap” and the “Fan Trap”
4

In order to assist ‘Aggregate Awareness’ navigation
4
1.1
Example 1 (Aliases) - The Shared Lookup
4
Using Aliases to correct loops
6
1.2
Example 2 (Aliases) - The Shared Flexible Lookup / Domains
7
1.3
Example 3 (Contexts)
12
1.3.1
An inappropriate use of Aliases…
13
1.3.2
A (much better) alternative solution…Contexts
13
1.3.3
How are Contexts used by the End-User?
14
a.
An ‘ambiguous’ query
14
b.
An ‘inferred’ query
14
c.
An ‘incompatible’ query
15
1.3.4
A word of warning when using Contexts
15
1.4
Can Contexts and Aliases be used together?
16
1.5
When do you use Contexts instead of Aliases?
17
1.5
Using Contexts with Aggregate Aware (Snowflake/Star) Schemas
18
2.
Chasm Traps & Fan Traps
19
2.1
The Chasm Trap
20
2.1.1
Background to the problem
20
Looking at the CUSTOMER/ORDERS relationship
20
Looking at the CUSTOMER/LOANS relationship
20
Finally, looking at the CUSTOMER, ORDERS and LOANS relationships together…
21
2.1.2
Using Contexts as a solution to the Chasm Trap
23
2.1.2
Why not simply use the “Multiple SQL statements for each measure” option?
23
2.2
The Fan Trap
25

This paper describes what ‘Loops’, ‘Chasm Traps’ and ‘Fan Traps’ are and discusses the reasons why BusinessObjects’ Universes often need Aliases and Contexts to work correctly. It does not attempt to discuss how the automatic detection of contexts and aliases are performed by the product. Its audience is directed at Business Objects technical staff (Consultants and Support) and our customers. It can be also used as appendices to back up our external course material. The topics presented here are equally applicable to 4.x and 5.x of BusinessObjects.

Essentially Aliases are used to resolve database loops and Contexts are used to resolve both loops and prevent the Chasm and Fan Traps. These three situations occur due to the inherent limitation of the ways joins are performed within relational databases (i.e. creating a cartesian product of all the tables used in a query and then performing a restriction across the cartesian product using the ‘joins’ (i.e. TABLE.COLUMN=TABLE.COLUMN) in the WHERE clause. Quite simply under certain circumstances, this method of performing joins allow the wrong results to be returned to the user with no warning whatsoever.

In essence we use Aliases and contexts when:

· Resolving database “loops”

Quite often in relational databases we come across multiple paths between lookup tables. Both paths are valid when used singularly but bring back different information. Unfortunately when writing SQL it is very easy to include both paths in the same query. The result is rarely what you actually want as the query result from each path is ANDed together (with no warning from the database) returning less rows than you expected. To make matters worse, its often very difficult to tell what’s happened just from looking at the results. The good news is that by looking at the database schema loops appear as cyclical paths and are quite easy to spot.

· Using Aliases…

In order to achieve the correct results we must use “aliases” (logical copies of tables) within our SQL query to “break” or “resolve” the loop. Basically you first identify which table is causing the loop (by identifying the lookup table which is being used for more than one purpose). You then tell the database to pretend that two mirror copies of the table exist for the duration of the query. After re-applying the joins (one of them to the alias instead of the original table) the cyclical path is broken and the correct information is returned.

· And sometimes Contexts…

Most loops (lets say 99%) should be resolved using aliases. However sometimes a case can occur where creating aliases do not make sense. In these cases we allow the loop to remain in the BusinessObjects schema but create two or more contexts which prompt the user to select one path or another (never both in the same SQL query) to enable the correct results to be returned.

(Aside: I should point out at this stage that V4 of BusinessObjects will still allow a user to take both paths around a loop by transparently splitting the query into multiple parts (corresponding to each context) and then merging the results back together again on the user’s workstation (this time correctly ORing the two results meaning that no rows are lost)

· Preventing the “Chasm Trap” and the “Fan Trap”

Conversely as loops return too few rows, certain circumstances cause databases to return too many rows. The most dangerous occurrences of this are when applying aggregate functions within SQL (e.g. SUM or COUNT). The results are multiplied by several factors and again, no warning is given to the user.

· In order to assist ‘Aggregate Awareness’ navigation

Loops naturally occur in schemas utilising aggregate tables. Aggregate tables are tables created by the DBA where the data from the fact tables have been de-normalised for faster performance. This leads to multiple paths between the lookup (dimension) tables and the fact/aggregate tables. Here contexts re used to ensure that the correct path is taken through the database depending upon the level of aggregation selected.

1.1
Example 1 (Aliases) - The Shared Lookup

In the Sales database, we sell products to customers on an international basis. Our customers come from around the globe, order products from us and ask for them to be shipped elsewhere around the globe. (For example “Paul” located within the UK orders some Mars bars and asks for them to be shipped to Dubai.). In our database the relationships look like this:

Figure 1
[image: image2.png]
Basically a customer comes from a country. A customer can place one or more orders (for a product). Finally each order is shipped to a destination country (not necessarily the country from which the customer comes from).

COUNTRY

country_id
country

1
USA

2
UK

3
France

4
Germany

5
Spain

CUSTOMERS

ORDERS

cust_id
last _name
loc_country

order_id
cust_id
order_date
ship_country

100
COLTRANE
1

12345
100
1/1/95
2

101
MULLIGAN
1

12346
101
1/6/95
1

102
WALDRON
3

12347
101
2/6/95
3

103
HANCOCK
4

12348
102
8/4/95
5

104
DAVIS
2

12349
103
10/3/95
4

105
BARBIERI
5

12350
104
15/8/95
2

106
STREATS
5

12351
105
6/2/95
5

12352
106
7/3/95
4

Now supposing I wanted to find out the following information; tell me the names of my customers, their location (i.e. country), the dates of each order and the shipment destination country.

SELECT

 CUSTOMERS.LAST_NAME,

 COUNTRY.COUNTRY,

 ORDERS.ORDER_ID,

 ORDERS.ORDER_DATE,

 COUNTRY.COUNTRY

FROM

 CUSTOMERS

 ORDERS,

 COUNTRY

WHERE

 (CUSTOMERS.CUST_ID=ORDERS.CUST_ID) AND

 (ORDERS.SHIP_COUNTRY=COUNTRY.COUNTRY_ID) AND

 (CUSTOMER.LOC_COUNTRY=COUNTRY.COUNTRY_ID)

If I were to use the above SQL, I would get the wrong (i.e. incomplete) results. I would only retrieve those rows where the customer’s had shipped orders to their location country (i.e. the shipment destination country had been ANDed with the Customer’s location country).

In other words instead of seeing this (i.e. the full result)…

last _name
country
order_id
order_date
country

COLTRANE
USA
12345
1/1/95
UK

MULLIGAN
USA
12346
1/6/95
USA

MULLIGAN
USA
12347
2/6/95
France

WALDRON
France
12348
8/4/95
Spain

HANCOCK
Germany
12349
10/3/95
Germany

DAVIS
UK
12350
15/8/95
UK

BARBIERI
Spain
12351
6/2/95
Spain

STREATS
Spain
12352
7/3/95
Germany

…you would only retrieve this…

last _name
country
order_id
order_date
country

MULLIGAN
USA
12346
1/6/95
USA

HANCOCK
Germany
12349
10/3/95
Germany

DAVIS
UK
12350
15/8/95
UK

BARBIERI
Spain
12351
6/2/95
Spain

Notice how you’ll only retrieve those rows where the Countries are the same!

Using Aliases to correct loops

The correct way to write this query is to use an “alias”. However, the first step is to identify “which is the lookup table being used for more than one purpose”. In this case its the COUNTY table (because its being used to lookup the Customer’s Locations as well as the Shipment Destinations). We call this particular case a ‘Shared Lookup’. So we pretend the schema looks like this:

[image: image3.png][image: image4.png][image: image5.png][image: image6.png][image: image7.png][image: image8.png][image: image9.png][image: image10.png][image: image11.png][image: image12.png][image: image13.png][image: image14.png][image: image15.png][image: image16.png][image: image17.png][image: image18.wmf]

[image: image19.png][image: image20.png][image: image21.png]Figure 2
Notice that the three original joins still exist but that the “loop has been broken” (i.e. there’s no longer any cyclical path). (Aside: If you want a clue as to how BusinessObjects V4 detects aliases, take another look at the physical schema. Notice how the COUNTRY table is the only table that has only the “one” ends of the “one-to-many” relationships hanging from the table. All the other tables have at least one “many” end. It’s actually a bit more complicated than that but it should give you an indication of why cardinalities are now so important to Universe design)

To create this in SQL we simply mention the table twice in the FROM clause suffixing it with an alternative name. Then from that moment on we simply reference the alias in the SELECT and WHERE clauses instead of the original table.

SELECT

 CUSTOMER.NAME,

 COUNTRY.NAME,

 ORDERS.ORDER_DATE

 DESTINATION.NAME

FROM

 CUSTOMER,

 ORDERS,

 COUNTRY,

 COUNTRY DESTINATION

WHERE

 (CUSTOMER.CUST_ID=ORDERS.CUST_ID) AND

 (ORDERS.SHIP_DEST_ID= DESTINATION.COUNTRY_ID) AND

 (CUSTOMER.CUST_LOC_ID=COUNTRY.COUNTRY_ID)

In terms of BusinessObjects, you must either create or detect the alias for the shared lookup table then build the objects and joins from that.

1.2
Example 2 (Aliases) - The Shared Flexible Lookup / Domains

In my sales database, my customers come from countries. They also place orders for goods which can be delivered by a number of Shipping companies (couriers). The names of the countries and shippers have been normalised into lookups. However, for physical reasons, instead of using two lookup tables only one has been created with a code, description and type field (used to indicate which particular types of information the record holds i.e. country or shipper). These type of lookups are called ‘flexible lookups’ or ‘domains’ and are popular in schemas automatically generated by CASE tools.

The schema and table layout are as follows:

[image: image22.png]Figure 3
CUSTOMERS

ORDERS

cust_id
last _name
loc_country

order_id
cust_id
order_date
ship_id

100
COLTRANE
1

12345
100
1/1/95
2

101
MULLIGAN
1

12346
101
1/6/95
1

102
WALDRON
3

12347
101
2/6/95
3

103
HANCOCK
4

12348
102
8/4/95
5

104
DAVIS
2

12349
103
10/3/95
4

105
BARBIERI
5

12350
104
15/8/95
2

106
STREATS
5

12351
105
6/2/95
5

12352
106
7/3/95
4

SYSLOOKUPS

type
code
description

CTRY
1
USA

CTRY
2
UK

CTRY
3
France

CTRY
4
Germany

CTRY
5
Spain

SHIP
1
Man With A Van

SHIP
2
‘Cut You Up’ Couriers

SHIP
3
Parcel Farce

SHIP
4
Boggit & Leggit Couriers

SHIP
5
Deliveries ‘R Us

SHIP
6
Sky Nut

In this case it’s the SYSLOOKUPS table which is being used for more than one purpose so we must alias it as many times as the logical table has domains (distinct values for the TYPE field).

[image: image23.png]Figure 4
You would now build the object ‘Customer’s Country’ as COUNTRY.DESCRIPTION and the object ‘Shipper’ as SHIPPERS.DESCRIPTION. The joins would be:

CUSTOMERS.LOC_COUNTRY=COUNTRY.CODE

and

ORDERS.SHIP_ID=SHIPPERS.CODE

However there’s still one final step to do is to restrict each alias to only returning its own domain’s information and not all the others. For example if I tried to find out who were the shippers I used to dispatch the two orders from customer 101, I’d expect two rows to be returned.

However the following SQL returns these results.

[image: image24.png][image: image25.png]
You can see that its brought back the countries as well as the shippers! Both ‘Man With A Van’ and ‘USA’ share a code of 1 while both ‘France’ and ‘Parcel Farce’ share a code of 3.

In order to do this we apply a ‘self join’ (or rather more appropriately a ‘self restriction’ to each alias) by specifying a new join, setting both ‘Table1’ and ‘Table2’ to SHIPPERS and then adding the SQL Expression “SHIPPERS.TYPE=’SHIP’ ”. You would do the same for the other alias, this time setting “COUNTRY.TYPE=’CTRY’ ”.

Note that adding the restriction to either the object’s WHERE Equivalent or the existing join between the alias and the CUSTOMERS/ORDERS table would not always produce the wanted result.

· Adding the restriction to an object’s WHERE Equivalent seems fine at first but remember that you’ll have to add the same restriction to every object you build from the alias. If I had many columns on the alias that I wanted to build objects out of this causes serious maintenance implications.

· Adding the restriction to the join between the alias and another table (e.g. table1=ORDERS, table2=SHIPPERS, SQL expression: ORDERS.SHIP_ID=SHIPPERS.CODE AND SHIPPERS.TYPE=’SHIP’) causes a more subtle problem. By doing this, the restriction will only be applied when the join is invoked. This means that running a simple query which only includes the object ‘Shipper’ will return every row in the SHIPPERS alias (including the unwanted ‘country’ rows) since there’s no reason to include the ORDERS table, hence the join is not seen to be necessary, hence the restriction does not get applied!

1.3
Example 3 (Contexts)

In the Sales database, my customers can either buy or hire out my products. (perhaps I have one of these car showrooms that sell you sell you expensive cars then hire out courtesy cars at exorbitant rates when your car’s back in the garage being fixed.). Therefore there are two different ways of modelling the relationship between my customers and my products; those products which have been ordered by (i.e. sold to) my customers and those products which have been loaned to my customers. My database therefore looks like this:

[image: image26.png]Figure 5
In effect, if you write a query which simply returns a list of customer names and a list of products and uses the ORDER and ORDER_LINES table, you’ll return a list of products which have been ordered by each customer. Going the other way (i.e. using only the LOANS and LOAN_LINES tables), you’ll bring back a list of products which have been hired by each customer. There’s obviously a loop and it needs to be resolved (otherwise any query which uses all six joins simultaneously will only return a list of products which have been both sold and loaned to my customers. If a product had been sold but never loaned to a customer (or vice-versa) it would not appear in the list of results.

1.3.1
An inappropriate use of Aliases…

If we try to resolve this using aliases we eventually run into trouble (I’ll show how a context is a better choice later).

Every time I ask course delegates to try to identify the lookup table which is being used for more than one purpose their response is guaranteed, “The PRODUCTS table of course…hang on…or is it the CUSTOMERS table?”

Anyway, let’s press on and assume that we should alias the PRODUCTS table.

[image: image27.png]Figure 6
Within the Designer, I would then build two objects “Ordered Product” and “Loaned Product” from the two aliases respectively. (Some of you may now be thinking, ‘Eh? But my users would argue that they only talk about “Products”, not “Ordered Products” and “Loaned Products”! Just “Products”’). Starting to make sense?

Well if you’re still not sure, let’s take this further. Just suppose that my products are manufactured in different countries of origin (e.g. Jaguars are made in the UK, Renaults are made in France etc.). Therefore in my original schema (Figure 5), the COUNTRY table would hang directly from the PRODUCTS table. If I were to draw it into figure 6a, the right hand side of the schema would resemble

[image: image28.png]Figure 6a

 would have to become…

Hang on, this is getting silly. I now need two new objects, ‘Ordered Product’s Country Of Manufacture’ and ‘Loaned Product’s Country Of Manufacture’!

1.3.2
A (much better) alternative solution…Contexts

A BusinessObjects’ Context is simply a collection of joins which specify one of the paths between tables within a loop. The principle goes that BusinessObjects will not include the joins from two different contexts within the same SQL query. (The product can however fire off multiple SQL queries concurrently to make it appear to the user that its bringing data back from both paths in the same query).

Using the above example, we can see that two paths exist between the two lookup tables CUSTOMERS and PRODUCTS; one via ORDERS and ORDER_LINES and the other via LOANS and LOAN_LINES.

We therefore simply define two contexts by supplying a label for each one and identifying the joins it can allow within a query (and by implication, the ones it can’t).

[image: image29.png]The ORDERS context will only include these joins…

Figure 7
While the LOANS context will only include these joins…

Figure 8
Its worth pointing out that the ‘Detect Loops’ button within V4.0 will still report this as a loop even after the contexts have been defined. At the time of writing this paper, the developers were currently investigating whether loops with associated contexts could be suppressed while the product was detecting them.

1.3.3
How are Contexts used by the End-User?

a.
An ‘ambiguous’ query

An End-User within the Reporter module builds a simple query using the two objects, ‘Customer Name’ (from the CUSTOMERS table) and ‘Product Name’ (from the PRODUCTS table). Upon pressing the ‘Run’ button within the query panel, the product performs a check to see if there if any contexts have been defined. In this particular case it finds two contexts but also finds that not enough information has been supplied within the query panel to identify which route/context to take between the two lookup tables.

So the product displays a dialogue box containing the contexts labels (i.e. ‘Orders’ or ‘Loans’) to the user asking them to select which context to use. The user highlights the appropriate context and the product inserts the respective tables and joins into the SQL query. If the user selects the ‘Orders’ context, the SQL will resemble:

SELECT

 CUSTOMER.NAME,

 PRODUCTS.NAME

FROM

 CUSTOMER,

 ORDERS,

 ORDER_LINES,

 PRODUCTS
WHERE

 (CUSTOMER.CUST_ID=ORDERS.CUST_ID) AND

 (ORDERS.ORDER_ID=ORDER_LINES.ORDER_ID) AND

 (ORDER_LINES.PROD_ID=PRODUCTS.PROD_ID)

Notice that the joins referenced by the other context (i.e. ‘Loans’) simply do not appear in the SQL

b.
An ‘inferred’ query

The End-User builds a new query including the same two objects (‘Customer Name’ and ‘Product Name’) and adds a third, ‘Order Date’ (from the ORDERS table).

This time after pressing ‘Run’ the product does not prompt the user for the context to use, it simply infers that the user wishes to use the ‘Orders’ context (because the ‘Order Date’ comes from the ORDERS table which is part of the ‘Orders’ context).

c.
An ‘incompatible’ query

The End-User builds a final query including the same three objects (‘Customer Name’, ‘Product Name’ and ‘Order Date’) and adds a fourth, ‘Loan Date’ (from the LOANS table).

The product will behave differently depending upon which version you are using.

Versions prior to V4.0 would stop with a message, ‘Incompatible Combination Of Objects’ meaning that you are not allowed to include objects from more than one context in the same query.

However pressing ‘Run’ in version V4.0 will again not prompt the user for the context to use, it simply infers that the user wishes to use both the ‘Orders’ and ‘Loans’ context and cleverly ‘splits’ the query into two parts (one returning ‘Customer Name’, ‘Order Date’ and ‘Product Name’ and the other returning ‘Customer Name’, ‘Loan Date’ and ‘Product Name’).

Upon retrieving the results of the two queries the product then cleverly synchronises the results back together (using ‘Customer Name’) and displays results as a multi-block report

For Example

Customer
12345

Order Date
Product Name

Loan Date
Product Name

12/01/96
Nissan Sunny

05/08/94
Pontiac

14/04/96
Renault 5

03/06/96
Ford Mondeo

20/09/96
Ford Fiesta

1.3.4
A word of warning when using Contexts

“Once you start using contexts in a Universe, every join must belong to at least one context.”
Looking again at my schema, I can see that the COUNTRY table hangs off the PRODUCTS table.

Figure 9
I’ve also marked the joins implicated in each context with either a L or an O depending upon which context it belongs. Now supposing I’ve just inserted the COUNTRY table into my BusinessObjects’ Universe Structure Window and created the join between PRODUCTS and COUNTRY. The point is that it doesn’t belong to any context yet and leaving it like this will cause our SQL generation engine to behave peculiarly within the End-User Reporter module.

Supposing you run the query, ‘Customer Name’, ‘Product Name’ and ‘Country of Manufacture’ (from COUNTRY) having selected the ‘Orders’ context. Versions prior to V4 would have caused, ‘Incompatible Combination Of Objects’ to appear and the query would not have run.

Version 4.0 will run the query but as two separate SQL parts. The first query will include the CUSTOMERS, ORDERS, ORDER_LINES and PRODUCTS tables whilst the second will include only the PRODUCTS and COUNTRY tables.

What has happened (in both versions of the product) is that BusinessObjects has looked inside its ‘Orders’ context definition and cannot see the join between PRODUCTS and COUNTRY within its joins list. It therefore assumes that this join cannot be included as part of the original query (causing V4.0 to run it as two separate queries and prior versions to stop altogether).

So which context does the join between PRODUCTS and COUNTRY belong? Well, both of them actually, meaning the final definitions of the contexts are as follows:

Orders

Loans

CUSTOMER.CUST_ID=ORDERS.CUST_ID
(

CUSTOMER.CUST_ID=ORDERS.CUST_ID

ORDERS.ORDER_ID=ORDER_LINES.ORDER_ID
(

ORDERS.ORDER_ID=ORDER_LINES.ORDER_ID

ORDER_LINES.PROD_ID=PRODUCTS.PROD_ID
(

ORDER_LINES.PROD_ID=PRODUCTS.PROD_ID

CUSTOMER.CUST_ID=LOANS.CUST_ID

CUSTOMER.CUST_ID=LOANS.CUST_ID
(

ORDERS.ORDER_ID=LOAN_LINES.ORDER_ID

ORDERS.ORDER_ID=LOAN_LINES.ORDER_ID
(

LOAN_LINES.PROD_ID=PRODUCTS.PROD_ID

LOAN_LINES.PROD_ID=PRODUCTS.PROD_ID
(

PRODUCTS.CNTRY_ID=COUNTRY.CNTRY_ID
(

PRODUCTS.CNTRY_ID=COUNTRY.CNTRY_ID
(

Notice how the PRODUCTS to COUNTRY join appears in both contexts!

Drawing the contexts graphically; first the “Orders” context:

Figure 10
Then the “Loans” context:

Figure 11
1.4
Can Contexts and Aliases be used together?

Yes they can (and often should). Take the full schema of the database:

Figure 12
becomes…

(Figure 13)
COUNTRY is aliased twice to create CUST_COUNTRY and PROD_COUNTRY. Two contexts (‘Orders’ and ‘Loans’) are created to resolve the CUSTOMERS to PRODUCTS loop. The contexts are finally extended to include the lookup tables not directly on the path. Notice how the two joins between CUSTOMERS and CUST_COUNTRY and PRODUCTS and PROD_COUNTRY appear in both contexts.

Orders

Loans

CUSTOMER.CUST_ID=ORDERS.CUST_ID
(

CUSTOMER.CUST_ID=ORDERS.CUST_ID

ORDERS.ORDER_ID=ORDER_LINES.ORDER_ID
(

ORDERS.ORDER_ID=ORDER_LINES.ORDER_ID

ORDER_LINES.PROD_ID=PRODUCTS.PROD_ID
(

ORDER_LINES.PROD_ID=PRODUCTS.PROD_ID

CUSTOMER.CUST_ID=LOANS.CUST_ID

CUSTOMER.CUST_ID=LOANS.CUST_ID
(

ORDERS.ORDER_ID=LOAN_LINES.ORDER_ID

ORDERS.ORDER_ID=LOAN_LINES.ORDER_ID
(

LOAN_LINES.PROD_ID=PRODUCTS.PROD_ID

LOAN_LINES.PROD_ID=PRODUCTS.PROD_ID
(

PRODUCTS.CNTRY_ID=PROD_COUNTRY.CNTRY_ID
(

PRODUCTS.CNTRY_ID=PROD_COUNTRY.CNTRY_ID
(

CUSTOMERS.CNTRY_ID=CUST_COUNTRY.CNTRY_ID
(

CUSTOMERS.CNTRY_ID=CUST_COUNTRY.CNTRY_ID
(

ORDERS.DEST_ID=COUNTRY.CNTRY_ID
(

ORDERS.DEST_ID=COUNTRY.CNTRY_ID

1.5
When do you use Contexts instead of Aliases?

There’s no hard and fast rule except that you should try to use aliases as much as possible. The reason is the basis behind the entire philosophy of BusinessObjects.

“BusinessObjects tries to hide the End-User from the complexities of the database structure and of SQL”
The reason we dislike contexts in favour of aliases whenever possible is that Contexts show the user the database structure and force them to think in its terms. Supposing we’d resolved the loops around the COUNTRY table using aliases and therefore built a single (ambiguous) object called ‘Country’. For starters the user sees the object in the Classes and Objects window and thinks ‘Country? But which country do they mean? Do they mean the Customer’s location, the shipment destination or the product’s country of manufacture?’ Then when they finally try to run the query they’re forced to tell the database which path to take!

Wouldn’t it be so much better to give them the terms that they think in? (i.e. ‘Customer’s Location’, ‘Shipment Destination’ and ‘Product’s Country of Manufacture’). And that’s what we can do if we use aliases.

However you saw what happened if we tried to resolve the CUSTOMERS/PRODUCTS loop using aliases. So that was an example of where contexts work better than aliases (but they tend to be rare!).

The only rule of thumb I can offer you is this:

“If by creating aliases you end up with object names which sound very different (e.g. ‘Customer’s Location’, ‘Shipment Destination’ and ‘Product’s Country of Manufacture’), aliases are probably the solution.

However if you would end up with object names which sound very similar (e.g. ‘Ordered Products’, ‘Loaned Products’ and ‘Ordered Products Country of Manufacture’, ‘Loaned Products Country of Manufacture’), contexts are probably better.”

The one clear exception are schemas containing aggregate or summary tables. A loop formed by one of these should always be resolved using contexts.

1.5
Using Contexts with Aggregate Aware (Snowflake/Star) Schemas

Take the following example:

(Figure 14)
FACT_AGG1 is simply the FACT table containing the (Customer) City Key, the Product Key and the Month key and a bunch of measures aggregated to Customer City, Product and Month. FACT_AGG2 is similar (i.e. the FACT table) aggregated to Customer State, Product Variety and Year.

The idea is that your measures (i.e. key performance indicators) like say, Sales Revenue is stored in both FACT_AGG1 and FACT_AGG2 as well as FACT (but aggregated to the respective levels). If you then run a query involving Sales Revenue and Customer State then you want the product to use the join between CUST_STATE and FACT_AGG2 instead of the join between CUST_STATE and CUST_CITY etc.

You will however need to build three contexts named FACT, FACT_AGG1 and FACT_AGG2 (there’s no need to rename them since the users will never see these context names).

The three contexts will then be defined as:

a) The FACT context

(Figure 14a)
b) The FACT_AGG1 context

(Figure 14b)
c) The FACT_AGG2 context

(Figure 14c)
 2.
Chasm Traps & Fan Traps

The Chasm Trap and Fan Trap are again circumstances where relational databases return the wrong result due to the ‘clumsy’ way joins are performed internally in relational databases.

2.1
The Chasm Trap

2.1.1
Background to the problem

Take the following database subset:

(Figure 15)

Typically a customer can place many orders and/or a customer can place many loans.

Looking at the CUSTOMER/ORDERS relationship

Running a query showing the ‘Customer Name’ (CUSTOMERS table), ‘Order Code’ and ‘Total Order Value’ (both from the ORDERS table) for the Customer, ‘PAUL’ will return the following information:

Customer Name
Order Date
Total Order Value

PAUL
12/01/96
100.00

PAUL
14/04/96
150.00

PAUL
20/09/96
150.00

Therefore running a similar query to find out the total order value for ‘PAUL’

SELECT

 CUSTOMER.NAME,

 SUM(ORDERS.TOTAL_VALUE)

FROM

 CUSTOMER,

 ORDERS

WHERE

 (CUSTOMER.CUST_ID=ORDERS.CUST_ID) AND

 (CUSTOMER.NAME = ‘PAUL’)

GROUP BY

 CUSTOMER.NAME

would result in the following:

Customer Name
Total Order Value

PAUL
400.00

Looking at the CUSTOMER/LOANS relationship

Running two similar queries for the loans information would reveal the following:

Customer Name
Loan Date
Total Loan Value

PAUL
05/08/94
50.00

PAUL
03/06/96
100.00

SELECT

 CUSTOMER.NAME,

 SUM(LOANS.TOTAL_VALUE)

FROM

 CUSTOMER,

 LOANS

WHERE

 (CUSTOMER.CUST_ID=LOANS.CUST_ID) AND

 (CUSTOMER.NAME = ‘PAUL’)

GROUP BY

 CUSTOMER.NAME

would result in the following:

Customer Name
Total Loan Value

PAUL
150.00

Finally, looking at the CUSTOMER, ORDERS and LOANS relationships together…

So you would expect the result of the following query (“show me the total order and loan values for Paul”) to provide the correct information:
SELECT

 CUSTOMER.NAME,

 SUM(LOANS.TOTAL_VALUE),

 SUM(ORDERS.TOTAL_VALUE)

FROM

 CUSTOMER,

 LOANS,

 ORDERS

WHERE

 (CUSTOMER.CUST_ID=LOANS.CUST_ID) AND

 (CUSTOMER.CUST_ID=ORDERS.CUST_ID) AND

 (CUSTOMER.NAME = ‘PAUL’)

GROUP BY

 CUSTOMER.NAME

would result in the following:

Customer Name
Total Loan Value
Total Order Value

PAUL
450.00
800.00

The Total Loans value has been trebled while the Total Order Value has been doubled!

The reason for this lies in the logical table formed by the result of the cartesian product of the CUSTOMER, ORDERS and LOANS tables.

CUSTOMERS.NAME
ORDERS.DATE
ORDERS.TOTAL_VALUE
LOANS.DATE
LOANS.TOTAL_VALUE

PAUL
12/01/96
100.00
05/08/94
50.00

PAUL
14/04/96
150.00
05/08/94
50.00

PAUL
20/09/96
150.00
05/08/94
50.00

PAUL
12/01/96
100.00
03/06/96
100.00

PAUL
14/04/96
150.00
03/06/96
100.00

PAUL
20/09/96
150.00
03/06/96
100.00

So when the SUM()s around ORDERS.TOTAL_VALUE and LOANS.TOTAL_VALUE come to do their work the results are:
800.00
450.00

Unfortunately, unless you ask to see the detail (i.e. the result tuples) the database provides no warning as to what’s happened leaving users to simply believe that the totals are correct!
(Unfortunately, relational databases are founded upon (precise) mathematics. The upshot of this is that your schema states that there is a relationship between the CUSTOMERS table and the ORDERS table. There is also a relationship between the CUSTOMERS table and the LOANS table. However, relational theory dictates that since there is no direct relationship between the ORDERS table and the LOANS table it is unlikely that you will ever wish to query the two together!!!)

The Chasm Trap occurs every time you have a “many-to-one-to-many” relationship within your schema. In this particular case the ORDERS to CUSTOMERS relationship is “many-to-one” and the CUSTOMERS to LOANS relationship is “one-to-many”. As you can imagine, this trap occurs quite frequently in most databases.

2.1.2
Using Contexts as a solution to the Chasm Trap

Contexts have been improved in V4.0 so that they no longer operate just on loops but can be used in open ended structures as well (Contexts could be used in previous versions of the product to prevent the Chasm Trap but you had to insert a ‘dummy’ join to form an artificial loop in order to make it work).

Figure 16

The trick is to start from the table with the “one-to-many” relationships ‘spawning’ from it and define contexts for each of the ‘legs’ (It doesn’t matter what you call the contexts since the names will never appear in front of the user since you cannot form an ‘ambiguous query’ - see the earlier section entitled ‘How are Contexts used by the End-User?’. In fact by default, BusinessObjects names the context using the ‘fact’ table - you can think of it simplistically as the table with the most “many” relationships in each ‘leg’).

Any “many-to-one” relationships hanging from the central table (CUSTOMERS) will not cause problems since by their definition they can only pull one row from the table hanging off it. Any of these joins should be added to all contexts for exactly the same reason as specified in the section entitled ‘A word of warning when using Contexts’.

For example a Customer comes from one and only one country (however a country may have many customers). This gives rise to a “many-to-one” relationship between CUSTOMERS and COUNTRY. If the relationship had been the other way around this would need a third context but since it won’t cause the Chasm trap itself, it must be added to both the other contexts.

Figure 17

2.1.2
Why not simply use the “Multiple SQL statements for each measure” option?

Within the V4.0 Designer module there’s an option to force the SQL generation engine within the Reporter module to create separate SQL queries for each measure that appears within the query panel. You’ll find this under the “File, Parameters…, SQL” tab. Although it appears to do a similar job, it will not separate queries containing only dimension objects.

For example

Running the query ‘Customer Name’ (CUSTOMERS), ‘Order Date’ (ORDERS) and ‘Loan Date’ (LOANS) without having defined a context for each leg will result in a single SQL query and a BusinessObjects report containing a single block with the results displayed as a cartesian product.

Last Name
Order Date
Loan Date

HEPBURN
4/1/92
3/12/61

HEPBURN
9/13/92
3/12/61

HEPBURN
11/5/92
3/12/61

HEPBURN
1/10/93
3/12/61

HEPBURN
4/1/92
2/6/61

HEPBURN
9/13/92
2/6/61

HEPBURN
11/5/92
2/6/61

HEPBURN
1/10/93
2/6/61

Once you’ve defined the contexts however, the results will appear as two blocks synchronised on the ‘Customer Name’ which makes a lot more sense to the end-user.

HEPBURN

Order Date

Loan Date

4/1/92

2/6/61

9/13/92

3/12/61

11/5/92

1/10/93

2.2
The Fan Trap

Typically a customer can place many orders. Each order may have many (order) lines. The idea runs along the lines of something like this. Pretend I’m stinking rich. When I go into my local car showroom to place an order, do I buy one car? NO! I buy lots of them at a time (e.g. “Hello Mr Salesman, I would like to buy three Ferraris, five Rolls Royce Silver Shadows, two Daimlers and oh yes,…a Skoda”).

Note : All measure objects must have SQL aggregate functions applied e.g. SUM (table.column). The first and simplest solution to a Fan Trap, the ‘multiple SQL statements for each’ measure will not work if the SELECT does generate a GROUP BY. GROUP BYs are generated when BusinessObjects sees SQL aggregate functions in an objects SELECT clause

Example data

Sample universe

Nothing is wrong .. yet

Note : for discussion of Exceptions B and C, it is assumed you have implemented the solution to Exception A

The value for Paul is now correct because the order value was calculated using order_line table. This is just normal Aggregate Awareness on aggregate tables. Think of order_header as an aggregate table of order_line for order value.

So, can we combine this Aggregate Awareness for order_header to order_line with the Aggregate Aware performance solution to Exception A? No. Why? In order to solve Exception B we need to guarantee that ‘order value’ is always calculated at order_line level whenever any order_line object is involved in the query. But Exception A requires that the alias to order_header is used when order_line object is used in the query. These 2 rules are contradictory. To guarantee accuracy and consistency of the measure’s value we have to rely on the order_header -> order_lines Aggregate Navigation rule defined for Exception B. This means that the performance improvement achieved by Exception A’s Aggregate Awareness cannot be realized i.e. when the order value can come from order level, it must always come from the alias which will always join to the main order_header table

Is this it all then?

Not quite, what about….

In hindsight, Exceptions B and C are essentially the same. The distinction was made because in all previous examples of Fan Traps only non-measures applying to the child tables were discussed.

No matter which object type comes from the child table, the solutions to the Fan Trap cannot work magic. If the measure at the higher level is not available at the lower level to be filtered and aggregated as necessary, then the measure’s value will be unchanged when filters/conditions are applied at lower levels. As long as users are informed of this, via documentation, training and object descriptions, then its up to them to remember this if making decisions based on the results of a query that contains such measures

So with all those aliases do we still need the ‘Multiple SQL statements for each measure’ option?

The use of aliases and ‘Multiple SQL for each measure’ both achieve the same aim i.e. break the query into multiple SELECTs to guarantee accuracy. But they differ in performance and completeness. ‘Multiple SQL for each measure’ will allow performance to be generally better than the alias method which always has to join the ‘order_header’ table to itself. But the alias method guarantees accuracy, subject to Exceptions B and C, whether measure or non-measures are used against order_line.

If a guarantee can be given that report builders will never combine a non-measure from a lower level table with a measure from any higher level in the same query, then the ‘Multiple SQL for each measure’ option would suffice. Otherwise the alias option is the best option, since users can be unpredictable in their use of objects and are unlikely to understand why they cannot combine such an obvious combination of objects.

Data for ‘customer’ table

�

Data for ‘order_header’ table

� EMBED PBrush ���

Data for ‘order_line’ table

� EMBED PBrush ���

Sample universe

� EMBED PBrush ���

‘show me customers and their total order value’ gives correct value

� EMBED PBrush ���

But ‘show me customers and their total order value with quantities for each car’ gives incorrect value for ‘Paul’

� EMBED PBrush ���

The 570 value is repeated 3 times, once for each order_line record for that order

� EMBED PBrush ���

We solve this via setting in Designer

� EMBED PBrush ���

Notes on ‘Multiple SQL statements for each measure’ option

This option only generates multiple SQL statements when the measures contain SQL aggregate functions and come from separate tables

With or without the option checked BusinessObjects would generate one SELECT for the following default SQL generation since both measures come from the same table :

SELECT

sum (order_line.quantity_sold),

sum (order_line.unit_price)

FROM etc

And the following would always generate a single SELECT because the measures do not contain aggregate functions:

SELECT

Order_header.total_order_value,

order_line.quantity_sold

FROM etc

This is now correct because BusinessObjects has split the SELECT into 2 separate SELECTs

� EMBED PBrush ���

EXCEPTION A - When a ‘order_line’ table non-measure is returned in the result set e.g. Unit Price. The results are wrong because this non-measure is causing order_line table to be involved in a SELECT that aggregates a order_header measure, same issue as before

� EMBED PBrush ���

To solve this insert an alias of order_header and join it to the original order_header table. This join should be on a separate context from order_header to order_line. Notice anything? You’ve just created a Chasm Trap (or what looks like one) so you’ve converted a Fan Trap into a Chasm Trap

�

Solved! Notice that only one SELECT makes reference to the order_line table? The ‘Alias Total Order Value’ object comes from the SELECT that does not reference the ‘order_line’ table

� EMBED PBrush ���

What about performance? We’re now joining order_header to itself, effectively, cant we do something about that?

We could try a short cut join between customer and the alias but what if a user applies conditions to the order_header table? These wont be applied to the alias and therefore wouldn’t work

We could introduce Aggregate Awareness so that the measure objects only come from the alias table when order_line objects are used in a query (or any table lower than order_line in any future schema). This would work as shown below note : the order_line measures are not stated as incompatible, since it is advisable to let the normal ‘Separate SQL statement for each measure’ option work when possible

The Aggregate Awareness measure would be defined as :

@Aggregate_Aware(

sum (order_header.total_order_value),

sum (FT_order_header.total_order_value)

)

�

� EMBED PBrush ���

EXCEPTION B - What about if someone applies a condition to the query using a non-measure object from order_lines table? E.g. [Product Name EQUAL TO ‘Ferrari’] condition. Although there are still 2 SELECTs, the results are inconsistent i.e. Paul did in fact buy 3 Ferrari’s but the total value was 300 (3 * 100) and not 570 as shown

� EMBED PBrush ���

The problem with exception B is that the total order value object is static, it comes only from order_header. We need it to be calculated with regard to the rows restricted on order_lines table and any subsequent ‘children’ tables of order_line. This can only be done if order_line has the necessary values to calculate order value. This example schema has order_line.quantity_sold and order_line.unit_price which when multiplied and then summed, will give the total order value calculated at order_line level, taking into account any conditions etc applied to that table. How do we make the ‘total order value’ object use order_line rather than the order_header or its alias table when necessary? Good old reliable Aggregate Awareness. The total order object should have the following definition:

@Aggregate_Aware(

sum (FT_order_header.total_order_value),

sum (order_line.unit_price * order_line.quantity_sold)

)

note : the order_line measures below are not shown as incompatible, again this is to allow normal ‘Separate SQL statement for each measure’ to work – this may change in the solution to Exception C

�

�

EXCEPTION C - What about when an ‘order_line’ measure is used in the conditions of the query (generating a HAVING clause) e.g. [Quantity Sold GREATER THAN 5] The Quantity Sold for David is missing! Why? Because the HAVING was applied to one of the SELECTs and the other was unaffected. The result is inconsistent i.e. we get David’s record returned even though we only want any customers who ordered more than 5 cars

� EMBED PBrush ���

Exception C returns incorrect results because there are 2 SELECTs and only one gets the HAVING clause applied. So either we need to apply it to both SELECTs or only have one SELECT. Since the quantity sold is not at order_header level (in this schema) we cannot place a HAVING clause on this table therefore must make the query use a single SELECT instead. This is achieved by making sure that ‘order value’ comes from the order_line table and BusinessObjects has no need either via spanning contexts or ‘separate SQL statement for each measure’ to generate 2 SELECTs

Change Aggregate Navigation to include order_line measures as incompatible with order_header alias table, causing order_line to be used when any object comes from there

� � EMBED PBrush ���

Discount amount measure – this works ok…

�

Include order_date in the query and we can see the Fan Trap i.e. ‘discount amount’ is inflated…

�

Steven’s record has disappeared but this is because there are no orders for Steven. An outer join would solve this but this isn’t relevant to Fan Trap solutions

Notice that the discount has been inflated? The discount is repeated for each order_header record. This is a normal Fan Trap symptom. So we solve it using techniques we saw earlier? E.g. ‘Multiple SQL statements for each measure’ and alias the ‘customer’ table. These will work for most cases but as we saw earlier wont work completely for Exceptions B and C. Let’s solve it for Exception A first…

Exception A –for discount_amount

�

Using the discount object, that refers to customer or the alias of ‘customer’ table depending on Aggregate Navigation, gives correct results for Exception A

�

�

Exception B – adding a non-measure to the conditions of order_header [order date GREATER THAN 1/6/2002] causes the order value to adjust down (from 230 to 200 for David) but the ‘discount’ amount is unchanged. Why? Simple. The discount is only available at customer level so its impossible for a query to know how much of that $20 for David was attributed to the 1/6/2002 order or the remaining 1/12/2002 order. This example cannot be solved without adding individual discount amounts to the order_header and/or order_line tables. If the database is not changed, then users have to be educated on the use of the discount value object(s), informing them that their value is static and will not adjust if conditions are applied at any order level.

�

Exception C – applying a measure to the conditions of order_header (one lower level in the hierarchy than where discount is stored).we start off with the correct figures (no condition):

�

Then we add the condition [total order value GREATER THAN 200] and again the discount amount is unchanged but the order value is.

�

COUNTRY

CUSTOMERS

ORDERS

are shipped to

comes from

can place

This is just a logical copy of the COUNTRY table

COUNTRY

CUSTOMERS

ORDERS

are shipped to

comes from

can place

DESTINATION

SYSLOOKUPS

COUNTRY

SHIPPERS

CUSTOMERS

ORDERS

COUNTRY

SHIPPERS

CUSTOMERS

ORDERS

�

order_id�
cust_id�
order_date�
shipper

�
�
12346�
101�
1/6/95�
Man With A Van�
�
12346�
101�
1/6/95�
USA�
�
12347�
101�
2/6/95�
Parcel Farce�
�
12347�
101�
2/6/95�
France�
�

SELECT

 ORDERS.ORDER_ID,

 ORDERS.CUST_ID,

 ORDERS.ORDER_DATE,

 SHIPPERS.DESCRIPTION SHIPPER

FROM

 ORDERS,

 SYSLOOKUPS SHIPPERS

WHERE

 (ORDERS.SHIP_ID=SHIPPERS.CODE)

CUSTOMERS

LOANS

ORDERS

LOAN_LINES

ORDER_LINES

PRODUCTS

CUSTOMERS

LOANS

ORDERS

LOAN_LINES

ORDER_LINES

ORDERED_

PRODUCTS

LOANED_

PRODUCTS

ORDERED_

PRODUCTS

LOANED_

PRODUCTS

ORDERED_

PRODUCTS

LOANED_

PRODUCTS

ORDERED

PRODUCTSCOUNTRY

LOANED

PRODUCTSCOUNTRY

COUNTRY

CUSTOMERS

LOANS

ORDERS

LOAN_LINES

ORDER_LINES

PRODUCTS

CUSTOMERS

LOANS

ORDERS

LOAN_LINES

ORDER_LINES

PRODUCTS

CUSTOMERS

LOANS

ORDERS

LOAN_LINES

ORDER_LINES

PRODUCTS

COUNTRY

O

L

L

L

O

O

CUSTOMERS

LOANS

ORDERS

LOAN_LINES

ORDER_LINES

PRODUCTS

COUNTRY

CUSTOMERS

LOANS

ORDERS

LOAN_LINES

ORDER_LINES

PRODUCTS

COUNTRY

COUNTRY

CUSTOMERS

LOANS

ORDERS

LOAN_LINES

ORDER_LINES

PRODUCTS

COUNTRY

O & L

CUST_COUNTRY (COUNTRY)

(

PROD_COUNTRY (COUNTRY)

(

O & L

O

CUSTOMERS

LOANS

ORDERS

LOAN_LINES

ORDER_LINES

PRODUCTS

O

L

L

L

O

O

CUST_STATE

FACT

PRODUCT

VARIETY

MONTH

YEAR

CUSTOMER

FACT_AGG2

CUST_CITY

FACT_AGG1

CUST_STATE

FACT

PRODUCT

VARIETY

MONTH

YEAR

CUSTOMER

FACT_AGG2

CUST_CITY

FACT_AGG1

CUST_STATE

FACT

PRODUCT

VARIETY

MONTH

YEAR

CUSTOMER

FACT_AGG2

CUST_CITY

FACT_AGG1

CUST_STATE

FACT

PRODUCT

VARIETY

MONTH

YEAR

CUSTOMER

FACT_AGG2

CUST_CITY

FACT_AGG1

CUSTOMERS

LOANS

ORDERS

One-to-many

One-to-many

CUSTOMERS

LOANS

ORDERS

ORDER_LINES

‘Orders’ Context

‘Loans’ Context

‘Loans’ Context

CUSTOMERS

LOANS

ORDERS

ORDER_LINES

‘Orders’ Context

COUNTRY

This join belongs in both Contexts!

One-to-many

One-to-many

Many-to-one!

Created 26th March 1997
Page 7 of 1

_1094637860

_1094639932

_1094642691

_1094739489

_1094712100

_1094641501

_1094640183

_1094638535

_1094638603

_1094638842

_1094638444

_1094636229

_1094637551

_1094636188

