	MikeD
	Project / Universe Designers Guide

Document History

	Version
	Date
	Created / Modified by
	Description

	1.0
	
	
	

	1.1
	
	
	

	1.2
	
	
	

1 Contents.

1Document History

21
Contents.

32
Introduction

32.1
Purpose

32.2
Scope

32.3
Audience

43
Before you begin…

43.1
Process Overview

64
The Strategy Process

64.1
Identify Universe Scope

64.2
Build Project Team

74.3
Create Project Plan

74.4
Plan BusinessObjects Architecture

84.5
Adopt Standards

84.6
Conduct a “Kickoff” Meeting

94.7
The Analysis Process

134.8
The Design Process

214.9
The Build Process

224.10
Quality Assurance

235
Exporting to the Test Domain

246
Exporting to the live environment

2
 Introduction

2.1 Purpose

This document serves to outline the best universe development practices to be followed when creating new or modifying existing Business Objects universes.

BusinessObjects development is centred on the development of universes. A universe is a business-oriented mapping of the data structure found in databases: tables, columns, joins, etc. It can represent any specific application, system, or group of users. In the BusinessObjects end user modules (this includes WebIntelligence), universes enable end users to build queries from which they can generate reports and perform analysis.

Universes isolate end users from the complexities of the database structure as well as the intricacies of SQL syntax.

2.2 Scope

This document is for guide purposes.

It is not a Technical or a trouble-shooting document.

2.3 Audience

This document is intended for viewing by anyone involved in a BusinessObjects project, especially those individuals undertaking the role of a Universe Designer. As the design of the Universe is an integral part of the project structure, it has been included as part of the project guide.

Additional information specifically relevant to the universe designer can be found in the Designers Guide.

3 Before you begin…

3.1 Process Overview

A BusinessObjects Universe is best developed using a structured process. Development tasks can be grouped under the traditional phases of the systems development life cycle, as shown in the “Waterfall Diagram” in Figure 1. A summary of each major phase is provided in this section; subsequent sections address each phase in detail.

During the Strategy process, sometimes referred to as the “Initiation Phase,” the scope of the BusinessObjects Universe is defined. Project teams are assembled and the initial task plan is defined.

During the Analysis process, analysts identify the data access and reporting requirements of the user community and record them in the form of candidate classes and objects. At this stage Sources for these requirements include interviews, existing artefacts, and a review of Analysis information from other projects (if available). Security requirements are also identified during Analysis.

During the Design process, the analyst maps objects to corporate data sources. Steps are taken to resolve any circular paths, or “loops,” within the data structures that support the required objects. There are many ways to resolve loops, including the elimination of joins and the use of Aliases.

Figure 1: Overview of Universe Development Process

“Slice and Dice” capability is planned by identifying each object as a dimension, a detail, or a measure. Dimension hierarchies are planned to facilitate “drill down” analysis.

Other Design tasks include the planning for “list of values” capabilities, identification of objects that should not be used in conditions and/or sorts, and selection of an approach to address security requirements.

During Build, the Universe is created using the BusinessObjects Designer software. Classes, objects, aliases, and lists of values are built according to the design.

Once functional, the Universe is deployed to super users for feedback. Changes are made based on user comments. This iterative process, “Rapid Application Development (RAD),” is one of the keys to successful Universe deployment. The feedback loop it creates (Fig 2), enables the developers to refine the design.

Figure 2: The Feedback Loop

When the Build is finalized, the Quality Assurance process begins. This process consists of a series of tests to verify the Universe for technical accuracy. These checks include a verification of adherence to standards, a review of object definitions for syntactic accuracy, and the validation of joins used.

Once the universe has passed all necessary quality assurance tests, it can be accessed and utilised by the Report Developers, in order to generate any predefined reports that the project requires. Once the reports have been completed, tested and the necessary impact Testing documentation produced, the universe and its associated reports are exported to the Test Domain.

In the Test Domain, reports are allocated to a small group of “live” users, for Business testing, and the production of a Business Accuracy document. Upon completing business testing, the universe and reports are ready for exporting to the live environment: The appropriate live group and users are created, and the Report Administrator assigns the group access to the new reports, with the appropriate refresh strategy.

4 The Strategy Process

4.1 Identify Universe Scope

As stated earlier, the definition and communication of project scope eliminates risk associated with deploying the Universe to super users during Build. Identification of scope should be the first project objective.

The scope is defined in terms of intended functionality of the Universe. Specific business processes to be supported are spelled out. Identification of target users of the Universe and standard reports required based on the universe also helps create a shared understanding of project objectives.

Key managers should be involved in the scoping process. Once formulated, the objectives of the project are communicated to everyone involved, directly or indirectly.

4.2 Build Project Team

In designating the team members, individuals must be chosen to fill the following roles. One person may fill multiple roles. Roles such as the Report Administrator and DBA may well span more than one project.

	Sponsor
	Usually the individual funding the project. The project sponsor makes any final decisions regarding scope or unresolvable issues.

	Project Supervisor User(Project Manager)
	The project Supervisor User develops the project plan, assigns resources, tracks, and reports on progress.

	Analyst
	Individual who gathers requirements in the form of candidate objects.

	Universe Developer
	Individual who designs and builds the BusinessObjects Universe.

	Data Expert (DBA)
	An individual familiar with the data structures.

	Key User
	Provides ongoing “business” perspective for developers.

	Super Users
	Users who will work with the Universe during the Rapid Application Development (RAD) process, building ad-hoc queries.

	Report Developer
	Individual who constructs the pre determined reports that are required by the users, based on the universe.

	Report Administrator
	An individual with BusinessObjects experience who is not a part of the development process that will perform a technical review of the final product. They will also issue the universe and its associated reports to the full live user community.

In most cases, a single person will be responsible for the bulk of the work, filling the roles of Analyst and Universe Designer, consulting the DBA when necessary. In designing and building the Universe, this person will maintain a relationship with the Key User, who is also one of the Super Users.

4.3 Create Project Plan

The project plan is the key to timely implementation. For each task, the plan should assign responsibility and target dates. Creation of the plan and the tracking of progress against the plan are the primary responsibilities of the Supervisor User.

4.4 Plan BusinessObjects Architecture

A review of the technical architecture should take place at the beginning of the project. Items to review include:

· Identify source for development data. Verify appropriate connectivity. Initiate any changes or purchases required and plan their implementation. This will involve the development DBA

· Production Environment. Locate source of production data. Verify connectivity. Initiate any changes or purchases required and plan their implementation. This will involve the production DBA

· Computers. Review required computing resources for developer and user workstations. Initiate any changes or purchases required and plan their implementation. Each project will typically require a minimum of 1 Supervisor, Designer and BusinessObjects license. This will involve the Software administrators & License Administrator

· Connectivity. Ensure infrastructure is in place to support connectivity between users/developers and the repository and data stores, including appropriate middle-ware to support communication between clients and servers. Initiate any changes or purchases required and plan their implementation. This will involve both the DBA’s , Software administrators & License Administrator

· Security. Initiate a first look at security requirements. To be refined during subsequent phases.

· Training Plan. Plan for a user training program.

Adopt Standards

Standards for the components of a BusinessObjects Universe will help to guarantee consistency and stability in the final product. During strategy, the team adopts a set of standards for BusinessObjects constructs.

Standards can be specified for:

· Universe Names

· Object definition guidelines

· Names for Simple Objects

· Names for Complex Objects

· Names for Aggregate Objects

· Class Names

· Alias Names

· Help Text

The standards may be revised during the course of the first Universe development project as the team becomes more familiar with the product.

4.5 Conduct a “Kickoff” Meeting

Communicate the strategy in a kickoff meeting. This is your opportunity to gather all interested parties (Universe Designers, users, and the sponsor) to ensure that everyone understands the scope of the endeavour.

Introduce the team members and be sure everyone understands who is responsible for what. Briefly discuss the plan, so that everyone understands how the project will proceed.

Finally, demonstrate BusinessObjects. This will help set expectations of the user community and is a good lead-in for the interviews that will be conducted during Analysis.

4.6 The Analysis Process

The primary objective of Analysis activities is to identify user requirements for the universe. These requirements are captured in the form of candidate classes and objects.
4.6.1 Identify Candidate Objects

There are many places to look for candidate objects. The best way to identify them is by talking to end-users. When interviewing end-users, the questions to ask are much the same as those used in interviews conducted during development of an OLTP application (that is, the “screens,” “reports,” and database design of an on-line system).

“What type of information do you need to do your job?”

“How do you know you are doing well?” or “How does your boss know you are performing well?”

“What kind of information do others ask you for?”

 Additional questions can be added to capture unique ad hoc requirements. For example:

“When someone comes to you asking for specific information they can’t get out of a report, what types of things do they ask for?”

As users answer these questions, record their answers in terms of class and object requirements. For example, if a user states, “They ask me for information on employees by department and hire date” you have identified a potential Class (“information about employees”) and an object or two (“department” and “hire date”). When you identify a potential class, probe for objects. For example, “What kind of information about Employees do they want?”

Candidate classes and objects can also be identified by reviewing existing reports, any special summaries reports that are hand-produced for managers, etc. If available, interview notes conducted during the Analysis phase for the development of the OLTP system should also be consulted.

4.6.1.1 Unlearn Relational Modelling

As previously mentioned, the questions asked during BusinessObjects interviews are similar to those asked in the development of OLTP applications. What is done with the answers is very different.

When conducting Analysis for an OLTP application, analysts record data requirements in entity relationship diagrams. Rules of normalization are applied to the items users’ request, breaking them down to an atomic level, eliminating calculated objects, etc. These activities optimise the data for storage in a relational database.

By contrast, requirements for an ad hoc query environment should be expressed in terms that are optimised for retrieval of the information. A successful BusinessObjects Universe presents information to a business person using her terms.

The developer must “unlearn” analysis techniques used for the development of application systems. User requirements must be taken at face value, remaining in business terms. Basic rules of thumb:

Do not normalize

Do not eliminate objects that can be derived from other objects

Do not try to figure out where this data can be found in the database

For example: in an interview, a user states “I need to look at annual sales figures by region.” Record this at face value-- identify the requirements, but do not attempt to transform them in a manner appropriate for storage in a relational database. You can identify three candidate objects: “Year of Sale,” “Sales Amount,” and “Region.” Do not eliminate “Year of Sale” because you have already recorded a “Date of Sale” object. Do not reduce “Sales” to the components from which it is calculated (perhaps “quantity” times “price”).

4.6.1.2 Learn Multi-Dimensional Modelling

Instead of normalizing object requirements, identify how they will support on-line analysis by end users. Objects that provide statistical information are called measures. They are always quantitative in nature, and represent aggregates (sums, averages, counts, etc.). Sales Revenue is a good example of a measure. In multi-dimensional modelling parlance, measures are often referred to as “facts.”

Dimension objects describe actual things, and are used to qualify measures. Region and Product are examples of dimensions. Combine the Region dimension with the Revenue measure to see Revenue by Region. Add the Product dimension and you’ve got a two dimensional matrix showing Revenue by Region and Product. Adding or rotating dimensions like this is referred to as “Slicing and Dicing,” and users will only be able to do this if you have carefully planned your measures and dimensions.

Dimensions can have details associated with them. For example, a Customer dimension may have Address and Phone Number details associated with it. In multi-dimensional modelling, these details are often referred to as “attributes.”

Tip:
Don’t assume that numeric data is always the source of a measure. It must make sense to aggregate the information for it to be suitable as a measure. Summing up Sales Revenue makes perfect sense; it is a measure. But it doesn’t make sense to aggregate List Prices of products; List Price is a dimension, or perhaps a Detail for the Product dimension. You will also find that you can create measures where there is no numeric data, simply by counting things. This can result in measures like Number of Orders

Identifying candidate objects as Dimensions, Details or Measures will facilitate Slice and Dice Analysis. You can also plan for Drill-Down and Drill-Up analysis by identifying dimensional hierarchies.

A hierarchy allows you to specify a dimension at different levels of granularity. You might have a customer hierarchy that allows the user to drill down from Continent to Country to City and finally to a specific Customer. Time dimensions make good hierarchies; you can break them down as Year, Quarter, Month and Date.

4.6.2 Record Class and Object Requirements

The candidate classes and objects are documented. The format in which they are recorded is not as important as the act of recording them.

Class and object requirements can be recorded in a document. Tables can be used to present the candidate objects, grouped into classes. The source of the requirement can also be recorded. An example is shown in Figure 3.

	
	Type
	Name
	Description
	Source

	
	Class
	Customer Information
	Information on a customer, including location, credit ratings, and shipping preferences.
	Interview #1

	
	Object
(Measure)
	Total Revenue
	This object can be combined with date ranges, customers, and/or products to provide meaningful measures.
	Interview #3,4

Figure 3: Recording requirements in a table

Another method of recording candidate objects involves the use of index cards. Use one 3” x 5” card for each candidate object. On the top line of the ruled side of the card, write the name of the candidate object in block letters. Below it, identify the type of object and provide explanatory notes. You can also record the source of the object. Figure 4 depicts an example.

Figure 4: Recording requirements on index cards

Tip:
Recording object requirements on index cards allows easy testing of requirements for completeness. The analyst can verify that requirements support a specific business question simply by sorting through the cards. For example, a user states, “I want to look at annual sales by salesperson.” Across a table, the developer lays out the cards that are required to answer the user’s question: “TIME OF SALE,” “REVENUE,” and “SALESPERSON.” If this can’t be done, there is an object requirement waiting to be discovered.

Note that in both cases, the qualification of objects is also recorded (dimension/detail/measure.) As you identify potential hierarchies in your candidate object requirements, record them as well.

Once you have documented requirements in the form of candidate objects, you are ready to begin to design the BusinessObjects Universe.

4.7 The Design Process

Once requirements have been identified, the team designs the BusinessObjects Universe.

4.7.1 Map Candidate Objects to Data Structures

The first task during Design is to determine and record the data source for each candidate object. If requirements were gathered in a tabular format, add a column to the table where you can indicate the SQL fragment that will be used to retrieve the object. If requirements were gathered on 3x5 cards, use the back of the card to record the SQL required to implement the object. For example, Figure 5 shows the flip side of the TOTAL REVENUE card that was created during Analysis.

Figure 5:
The flip side of the TOTAL_REVENUE card shows how the object is mapped to data sources.

Any candidate classes that were captured as general requirements without specific objects must be expanded now. For example, suppose there was a candidate class called “Customer Information” and the specific objects within this class were not identified. During Design, the developer must “fill out” this class. She might fill it out based on knowledge of the business; she might indicate to include all columns from one or more tables; or she might go back to users for more detail.

There are several ways of objects can be mapped to enterprise data. Simple objects map back to a single column in the database. An example would be “Customer First Name,” which maps back to the FIRST_NAME column in the CUSTOMERS table. But objects are not limited to a one-to-one correspondence with a database column; the full range of SQL syntax can and should be exploited to create objects.

Complex objects make use of SQL to manipulate data that comes from one or more columns. For example, a “Customer Full Name” object might connect CUSTOMERS.FIRST_NAME and CUSTOMERS.LAST_NAME. A “Phone Number” object might take a phone number from the database and place parentheses around the area code.

Aggregate objects involve SQL “group” functions. Counts, Sums, and Averages are all aggregate objects. The Total Revenue object in Figure 5 (above) is an aggregate object; it uses the SQL SUM function.

Aggregate objects are very powerful because the results they return depend on the context in which they are used. The Total Revenue object can be combined with “Salesperson Name” to see revenue by salesperson, with “Product” to see revenue by product, or with a date range to see revenue over a period of time.

4.7.2 Plan for “Slice & Dice” and “Drill-Down”

As you design the Universe, you must complete a process you began during analysis. Each object’s “qualification” must be identified to support “slice and dice” capabilities. If you have not already done so, identify each object as a measure, a dimension or a detail. For each detail object, identify the dimension it describes.

Similarly, you must finish identifying hierarchies within your dimensions. These hierarchies will later enable users to “drill-down” and “drill-up.”

4.7.3 Build Table Diagram

Now that the objects are mapped back to data sources, the developer reviews all the objects and produces a table-diagram of the database objects that will support the Universe. Joins between the tables are then added to the diagram. This can be done on paper, or the analyst can use the BusinessObjects Designer software.

The table diagram is a valuable tool for resolving loops in the model. It will also become an important reference for developers.

If a CASE tool is available, make use of it. For example, if Oracle’s Designer/2000 tool was used to build your database, create a new module within the repository. This module represents the BusinessObjects Universe under development. You can associate data usages with this model to represent the database objects accessed by the universe. Later, this will allow you to assess the impact of database changes on your BusinessObjects Universes.

4.7.4 Resolve Loops

Next, review the table diagram looking for “Loops.” A loop is said to exist when there is more than one “path” of joins between two tables. If a loop exists between two tables, BusinessObjects will not be able to generate the SQL for a query against the tables; it does not know which “path” to choose. Any loops in the model must be resolved.

Consider the example shown in Figure 6, based on a simple order-entry system. The boxes represent tables, and the lines represent joins.

Figure 6: A Loop

You can see that customers place orders, as depicted by join ‘a.’ Each order is made up of one or more order_lines (join ‘b’). Each order_line is for a specific product (join ‘c’) and each product is manufactured by a specific supplier (join ‘d’.). Each supplier resides in a specific country (join ‘e’), and each customer resides in a specific country as well (join ‘f’).

BusinessObjects cannot generate queries for objects that are part of this loop. There is more than one “path” from one table to another. For example, if objects in a query require information from products and countries, should BusinessObjects generate SQL using joins ‘d’ and ‘e’ (countries in which products are made) or joins ‘f,’ ‘a,’ ‘b,’ and ‘c’ (countries from which products are ordered)?

Loops like this one can be resolved through the elimination of a join, or the use of SQL Aliases.

Tip:
You can use the “Detect Loops” option in the Designer module to test for loops, but be aware that there are some situations where BusinessObjects may not detect a problem. If the loop involves only two tables, BusinessObjects will assume that the two joins are sub-components of a multi-column join rather than separate relationships. It will not detect the loop.

4.7.4.1 Resolving Loops by Eliminating Joins

If possible, resolve a loop by eliminating a join, such that only one path exists between any remaining objects.

Figure 7 shows a possible solution for the example loop. Join ‘f’ between countries and customers has been removed, leaving only a single path between any two tables.

Tip:
Be careful in removing a join; the connections that remain must produce query results that would make sense to the users.

Figure 7: The loop resolved by removal of join ‘f’

Tip:
If the foreign key to countries from customers is made available as an object, and the primary key in countries is also made available as an object, users would have more than one way of retrieving the same information, each with a different meaning. The object names and the grouping of objects into classes must make it clear to the user what the result would be when using each object.

4.7.4.2 Resolving Loops with Aliases

There may be times when you cannot resolve a loop by removing a join. In such cases, attempt to make use of an alias.

In the solution shown in Figure 7, country information is only available in the context of a supplier. What if country information is also needed in the context of customers? If so, the solution does not support the business needs. An alternative solution involves using aliases for the countries table.

Definition of ‘Alias.’ An “alias” is a SQL construct designed to allow multiple “instances” of a table in a single query. Each alias represents the table in a different context.

For example, consider a simple employee table. The table contains employee_id, employee_name, salary, and manager_id. The manager_id column contains the employee ID of the person’s manager (a recursive foreign key). A diagram of this simple table is shown in Figure 8.

Figure 8: The employee table

To retrieve a list of employees and their supervisors, one uses two aliases for the employee table. One represents the employee, and one represents the employee’s manager. The SQL is shown here, with alias declarations bolded:

select person.employee_name,
 person.salary,
 manager.employee_name
from employees person,
 employees manager
where person.employee_id = manager.employee_id (+);

employee_name salary employee_name
----------------- ---------- ------------------
Maria Jones 100,000
Mark Smith 50,000 Maria Jones
Sally Roberts 44,000 Maria Jones
Denise Watson 26,000 Mark Smith

In this example, person and manager are aliases for the employees table. The aliases allow references to the same table in different contexts.

Using Aliases in BusinessObjects A loop can be resolved in BusinessObjects through the creation of aliases. One table in the loop is replaced by multiple aliases, each of which is used with appropriate joins for the context it represents.

Note:
The word ‘context’ as used here is not referring to the BusinessObjects construct called a ‘context.’

Returning to the order-entry example, assume that the business situation requires country information in the context of suppliers and country information in the context of customers. The solution from Figure 7 does not allow the latter since the join between countries and customers has been removed.

An alternative solution would be to “duplicate” the countries table using two aliases. One alias of countries will relate to customers and the other alias will relate to suppliers. This approach is shown in Figure 9, below.

Figure 9: The loop resolved using aliases for countries
Alias cust_countries is used with join ‘f,’ and alias supp_countries is used with join ‘e.’ The loop has been broken, but all the required joins are still available so that countries information is available in both contexts.

Tip:
Where there are loops, look for a table that is on the “one” side of multiple one-to-many relationships. This table may be a good candidate for aliasing. That’s because in most cases it will not make sense to use the table in conjunction with both the related tables; such a query would produce a Cartesian product of the related rows.

4.7.5 Revise Objects and Table Diagram

Once loops are resolved, the design of some objects will require modification. Any object based on a table that was replaced by an alias must be updated. Sort through your index cards or requirements looking for such objects. References to the table must be replaced by references to one of the aliases.

Some objects may be applicable in the context of more than one of the aliases; these objects will be split into multiple objects. Review your index cards or requirements tables for any objects based on tables that are now aliased.

Suppose that in our example, the object “Country Name” was mapped to a column in the countries table. Since this table was replaced by the aliases cust_countries and supp_countries, the object must now be modified to map to one of the aliases instead. Because “Country Name” makes sense in the context of both aliases, this particular object might be split into two objects: one called “Customer Country” and one called “Supplier Country.” Each would be tied back to the appropriate alias. Note that the object names make it clear what each one represents.

Tip:
If a table is aliased, be sure that it is never accessed by its underlying name anywhere in a Universe. If it is, queries that combine objects that map to the alias and objects that map to the actual table name will fail with the SQL error “Column ambiguously defined.”

4.7.6 Review Join Strategy

Where table relationships are optional, the type of join to use must be chosen carefully. The use of standard vs. outer joins will impact the results of user queries. Using the wrong type of join may provide results that are not what users expect.

In SQL, a standard join between two tables will return only rows where both tables meet the join criteria. If one of the tables has no corresponding row in the second table, its data will not be returned.

An outer join tells the database processing the SQL query to substitute a “null” row if one of the joined tables has no corresponding row in the other table. With an outer join, information in one table that does not have corresponding data in the second table is returned with “blanks” in columns from the second table.

Recall from the example that each customer may be the originator of one or more orders. Suppose the developer uses a standard join between customers and orders. A user who queries on objects that come from customers and orders tables will only receive information for customers that have associated orders. The user will not receive any customers that have not placed orders. The standard join prevents these customers from showing up. Is this the behaviour users would expect?

Alternatively, an outer join would cause this query to return all customers, with order data where applicable. Perhaps this is closer to what business managers would want to see, especially if order data is purged every year.

Use of an outer join, however, would make it more difficult for a user to retrieve ONLY customers that have orders; this would require an extra qualifier on the query.

Tip:
Be careful! An outer join can alter the results of aggregate functions. Suppose there is a “Total Number of Orders” object that is defined as COUNT(ORDERS.ORDER_ID). A user combines this object with the “Customer Name” object to get the number of orders for each customer. The “Total Number of Orders” object will return ‘1’ for customers with no orders!

The outer join has caused this behavior, because it causes the substitution of a “null” order for customers with no orders. Changing the object’s definition to ”COUNT(ORDERS.ORDER_ID) where ORDERS.ORDER_ID is not null” will solve this problem.

The developer must review join possibilities with a key user wherever optional relationships exist. The chosen solution should produce results that users are most likely to expect. In limited cases, it may be possible to create joins that contain prompts. In our example, such a join might generate the following prompt when the query is run:

“Include Customers for whom there are no orders?”

4.7.7 Identify Allowable Object Usage

The developer may identify certain objects that should not be used in qualifications by end-users. Certain complex objects may not be usable in qualifications for technical reasons, or there may be performance considerations. The same holds true for sorts.

4.7.8 Determine Security Approach

Security requirements must also be addressed during Design. Solutions to security requirements may involve complex object definition, reliance on database-level security, use of BusinessObjects “Access Levels”, or the development of multiple Universes. Chosen solutions may impact the database administrator and developers.

4.8 The Build Process

Once the Design process is complete, the development team is ready to begin using the BusinessObjects Designer software to construct the Universe. Super users and Report Designers then begin to use the Universe. They provide feedback to developers who refine the Universe until Build is completed.

4.8.1 Build the Universe

The BusinessObjects Designer software is used to actually build the Universe. The developer must:

· Name the Universe

· Set up the Universe parameters

· Create ALIASES as identified in the Universe design

· Create Joins as identified in the Universe design

· Create Classes, Sub-Classes and Objects as identified in the Universe design

· Identify objects as Dimensions, Details or Measures

· Define Hierarchies

· Define Lists of Values and Help Text

If you used Designer to build your table diagram during design, you have already completed the first four steps. As the classes and objects are constructed, be sure to follow any standards that were put in place during the Strategy process.

For detailed information on using BusinessObjects Designer software, see BusinessObjects Designer’s Guide.

4.8.2 Testing and Refinement (Rapid Application Development or RAD)

Once an initial Universe is built, it is deployed to the Super users and Report Developers. These users work with the Universe and provide feedback to the developers. Types of feedback include:

· Better names for classes and objects

· Objects not in the Universe that should be added

· Objects that can be removed

· Better ways to organize objects (e.g., move an object from one class to another, reclassifying a dimension as a detail, etc.)

· Objects or queries that don’t behave as expected

Based on this feedback, the Universe is modified. The modified Universe is made available to the super users and report developers for further evaluation. This iterative process is called Rapid Application Development (RAD)

As previously mentioned, it is important that the testers understand the scope of the Universe before testing begins. Each iteration should be a refinement of the Universe, rather than an expansion. Without a shared understanding of the objectives, the project can lose control, or become bogged down in “Scope Creep” during this process.

4.9 Quality Assurance

After the Universe is finalized, the Universe is reviewed for Quality Assurance. An independent reviewer makes the following checks:

· Corporate Standards for Universe, object, class, and alias naming are followed

· Objects are only defined with tables that are referenced in the select text or where condition

· Objects return results without syntactic error

· Objects return intended business results

· Objects are correctly classified as dimensions, details or measures

· Defined hierarchies make sense

· Objects have help text

· Aliases are used appropriately

· Join syntax and foreign keys are accurate

· Standard and outer joins are used appropriately

These checks are best made by an individual who was not part of the development of the Universe, guaranteeing an objective perspective. This should be carried out by the Report administrator. Any issues that are identified are reported to the developers for correction and re-review. The results of the test should be published in a Quality Assurance Document.

Once complete, the universe can be accessed by the Report Developers to develop any pre defined reports that are required. These should be tested and a Report Test Document produced by the Report Administrator, along with the Impact Test by the Report Designer.

Once the Quality assurance and necessary Report Test document have been satisfactorily completed, the universe and its associated reports can be exported to the Test Domain.

5 Exporting to the Test Domain

As this process is mainly concerned with the development of reports, and the completion of the Business Accuracy Document (the universe is tested and established by this point in the process), it is covered in the Report Administrators guide.

6 Exporting to the live environment

As this process is mainly concerned with the administration and distribution of reports, (both the universe and reports are tested and established by this point in the process), it is covered in the Report Administrators guide.

12 February 2007
Page 1 of 24

_884180767

_884429144

_884433601

_884522947

_884433241

_884180768

_883489636

_884180763

